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Short Papers

One-Root Intervals of Dispersion Relations for a

Resonator with Dielectric Sample

VLADIMIR BILIK

Abstract —A method is developed yielding intervafs with analytically

expressed bounds that contain only one root of the dispersion relation

corresponding to any chosen mode of a cyfindricaf resonator with a

dielectric sample, filfing its cross seetion afong part of the length of the
resonator. A method for findkg both the eigenfrequency and the sample

permittivity is given.

I. INTRODUCTION

A frequently used arrangement to measure dielectric properties

of materials is a resonator with a dielectric sample filling part of

the resonator length in its whole cross section [1]. The general

configuration is shown in Fig. 1. Such a system can support

TE .nP and TMmEP modes. To analyze them, it is necessary to

solve the following set of equations:

k;=k:+h: (1)

crk~ = k:+h: (2)

F(h., h~, c,)=O. (3)

Equation (3) is generally called the dispersion relation. k.=

2 rfO/c, where f. is the eigenfrequency of a given mode, c is the

velocity of light in free space, kc is the cutoff wavenumber, h ~

and h ~ are the wavenumbers along the resonator’s axis in air and
dielectric, respectively, and c, is the relative permittivity of the
sample. It is assumed that the dielectric is lossless, the resonator
walls are perfectly conductive, and that the sample thickness as
well as the distances dl + dz are nonzero. Forms of (3) which are

convenient for numericaf computations are given in Appendix 1.

A method for deriving them has been described by Gardiol [2].

Because h ~ is always real, it is convenient to eliminate all

unknowns but h ~ when solving (l)–(3), so that we obtain an
equation with one real variable

G(hd)=O (4)

which is a rather complicated transcendental equation (it is

sufficient to solve it for h ~ > O). The roots of (4) can be arranged

into an increasing sequence {x$} ~. ~. The sequence number s of

theroot iss=pfor TE,ti~P modes (p=l,2,3, . ..)ands=p+l

for TM,,,nP modes (p = 0,1,2,... ). In order to numerically

evaluate any of these roots, an initial guess of the desired root

must be made. This guess should be sufficiently close to ensure

proper convergence of the root-finding routine. It is therefore

useful if one can state an interval (us; u,) which contains only

the required root x$. In this paper, a method of finding such a

one-root intervaf with analytically expressed bounds is presented.

It is based on a similar method [3] developed for dielectrically

loaded rectangular waveguides.
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II. DETERMINATION OF THE ONE-ROOT INTERVAL

Equation (3) can be rewritten as

h [cr+h~’k:(cr -l)] tanhadltanhad,-l =h ,tmhdt
a tanhadl+tanhadz d

(5)

for TE modes and as

h ~ tanhudltanh.d2 –hj2k~c~2(cr–1)–t~l
ar tanhad1+tanhad2

=hd/tanhdt

(6)

for TM modes. The right-hand side is a function of h d and has

poles at b~= jm/t, j = 1,2,3, . . . . It is decreasing within (O; bl)

and ( bJ; bJ+ ~). The left-hand sides of these equations are frmc-

tions of h.. For h ~ >0, the left-hand side of (5) has poles at

a, = Zm/(dl + dJ and that of (6) poles at a, = n(i –l)\(dl + d2),

i=l,2,3, . . . . Both functions are increasing within (al; a, + 1).

For h ~ <0, the left-hand sides are continuously decreasing func-

tions of Ihal.

When evaluating fo, we multiply (1) by c,, subtract it from (2),

and express h. in terms of the resulting equation. Substituting h.

into (5), resp. (6) yields the equation

f(hd)=h@inhdl. (7)

The function f ( h d) has poles at

/c,= fra~+k~(cr–l) , i=l,2,3, . . .

and is increasing within (O; CJ and (c,; c,+ J. The plot off and

g = h ff/t~ h dt is given in Fig. 2. It is obvious that just one root
of (7) thus of (4) lies between each pair of adjacent poles from the

set {c,, b, }~J = 1. The first root always lies between h d = O and the
lowest of the poles. Consequently, if forming a nondecreasing

sequence { Zk }~= ~ from zero and all the elements of the sets {c, }

and { bj }, the root x~ will satisfy the condition Z$ < X, < Z.+ I ~d

the bounds of the required interwd are

u~=zx, vr=z$+~. (8)

Note that if z, = zs+l~ we should choose V~_1=z8—8, U3+1=Z

+ 8, where 8 is a sufficiently small correction, because z, is equ~

to the root x,. If x, is chosen as an initial value when looking for

x,_ ~ or x,+ ~, the iteration may fail. However, the case z, = z~+ ~

is extremely unlikely for t,> 1 and can safely be disregarded. It

can occur for c, =1, but this case (empty resonator) is of interest

only when debugging the program.

When solving for c, (task of measuring the permittivity of the

sample), we express h ~ in terms of (1) and c, in terms of (2).

Substituting them into (5), resp. (6), we again obtain an equation

similar to (7). This time, its left-hand side f has no poles and is

monotonous in intervals large enough that only one intersection

off and g occurs in each section of g. Therefore

jfi/t< x,< (j+l)9r/t. (9)
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Fig 1 Configuration discussed in this paper.

Fig. 2, Graphical solution of (7). The elements c,, b,, Zk are shown m the
lower part of the diagram.

It can be proved (Appendix H) that forj we must take

j=~–z–l (lo)

wheres is the sequence number of the sought root and

[

int[h. (dl+d2)/7f] h:>O, TE modes (ha)

i= l+int[ha(dl +d2)/7r] hi>o, TM modes (llb)

o h:<O. (llC)

(int x is the greatest integer value of x). The bounds of the

required intervaf are

u,= j~/t, v,= (j+l)m/t. (12)

III. CONCLUSION

The presented method of defining one-root intervals quickly

and reliably determines the roots of dispersion relations for any

chosen mode of resonance without ambiguity and represents an

effective tool for systematic computer analysis of the structure.

APPENDIX I

DISPERSION RELATIONS

In order for the transverse field components to be continuous

at the air-dielectric interfaces of the resonator, certain specific

relation between the wavenumbers h. and h ~ must be satisfied.

This relation is referred to as a dispersion relation. For the TE

modes of the discussed resonator, the dispersion relation is

[()
2

sinh~t hd
~ sinh Ud1sinhtid2 -coshodlcosh Ud2

h~ ~ 1

sinha(dl+dz)
–coshdt

ho
= O (Al)

and for the TM modes, it is

Y(h~coshadlcosh. d2-c?h~sinh.d1sin hud2)
d

+ crhacosh~~sin hd(dl+dz) =0. (A2)

APPENDIX II

PROOF OF FORMULAS (10) AND (11)

The lower bound u,= z, of a one-root interval for root x. is

identical with the s th member of the sequence { ZL }, whose

members ZI through z, can be obtained by arranging the elements

O,cl, c2,. ... cl, bl, b2, b,., b, (A3)

into a nondecreasing (finite) sequence. The overall number of

elements used in (A3) is s = i + j +1, hence (10) is valid. Last

used poles being b, and c1 implies both (9) and cl < x~ < c1+ ~,

which is for h. > a; equivalent with a, < h ~ < a,+ ~ and results in

(lla,b) after simple calculations. If h. < al (al # O for TE modes

only) or if h ~ <0, no element from the set {c, } is used in (A3), so

that i = O. The result i = O is obtained from (ha) for h. < al and

from (llc) for h: <0.
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Normal-Mode Parameters of Microstrip Coupled

Lines of Unequal Width

S. KAL, D. BHATTACHARYA, AND N. B. CHAKRABORTI

Abstract — Empirical relations for the capacitive and indnctive coupling
coefficients have been used to compute normal-mode parameters of non-
identical microstrip coupled lines. The computed values of mode velocities

and mode impedances are compared with available results from the litera-

ture and experimental results on nonidentical microstrip couplers to test

the applicability of the empirical relations.

I. INTRODUCTION

The normal-mode parameters of rnicrostnp coupled lines are

usually determined from the capacitances and inductances of the

microstrip lines [1]–[6]. These are found by solving Laplace’s

equation for the quasi-TEM case and the Hehnholtz equation for

the dispersive case [1]. Tripathi and Chang [2] calculated self and

mutual capacitances for nonidentical microstrip coupled lines

using Green’s function integral equation method. This short

paper aims at providing simple relations for finding the ncrmal-

mode parameters of nonidentical lines.

A previous communication [7] described the use of the empiri-

cal relations for inductive and capacitive coupling coefficients of

identical coupled microstrip lines. These have now been modified

to enable calculation of the normal-mode parameters of noniden-

tical microstrip coupled lines from a knowledge of the dimen-

sional ratio of the lines and relative dielectric constant of the

substrate material. Values of normal-mode parameters thus com-

puted from the quasi-static approach have been compared with
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