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Short Papers

One-Root Intervals of Dispersion Relations for a
Resonator with Dielectric Sample

VLADIMIR BILIK

Abstract —A method is developed yielding intervals with analytically
expressed bounds that contain only one root of the dispersion relation
corresponding to any chosen mode of a cylindrical resonator with a
dielectric sample, filling its cross section along part of the length of the
resonator. A method for finding both the eigenfrequency and the sample
permittivity is given.

I. INTRODUCTION

A frequently used arrangement to measure dielectric properties
of materials is a resonator with a dielectric sample filling part of
the resonator length in its whole cross section [1]. The general
configuration is shown in Fig. 1. Such a system can support
TE and TM,,,, modes. To analyze them, it is necessary to

sols;nenghe following set of equations:
k§=ki+hg 1)
€, k3 =k2 + h3 @)
F(hy,hg,€,)=0. €)

Equation (3) is generally called the dispersion relation. ko=
2af, /c, where f; is the eigenfrequency of a given mode, ¢ is the
velocity of light in free space, k. is the cutoff wavenumber, 4,
and h , are the wavenumbers along the resonator’s axis in air and
dielectric, respectively, and e, is the relative permittivity of the
sample. It is assumed that the dielectric is lossless, the resonator
walls are perfectly conductive, and that the sample thickness as
well as the distances d; + 4, are nonzero. Forms of (3) which are
convenient for numerical computations are given in Appendix 1.
A method for deriving them has been described by Gardiol [2].

Because h, is always real, it is convenient to eliminate all
unknowns but A, when solving (1)-(3), so that we obtain an
equation with one real variable

G(hy)=0 (4)

which is a rather complicated transcendental equation (it is
sufficient to solve it for A, > 0). The roots of (4) can be arranged
into an increasing sequence { x,}3%.;. The sequence number s of
the root is s = p for TE,,,,, modes (p =1,2,3,---)and s=p +1
for T™,,,,, modes (p=0,1,2,---). In order to numerically
evaluate any of these roots, an initial guess of the desired root
must be made. This guess should be sufficiently close to ensure
proper convergence of the root-finding routine. It is therefore
useful if one can state an interval (u,; v,) which contains only
the required root x,. In this paper, a method of finding such a
one-root interval with analytically expressed bounds is presented.
It is based on a similar method [3] developed for dielectrically
loaded rectangular waveguides. ‘
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II. DETERMINATION OF THE ONE-ROOT INTERVAL
Equation (3) can be rewritten as
, [e,+n;%k2 (e, —1)| tan h d, tan b d, —
a tanh  d, ttanh d,

1
=hd/tanhdt

(5)
for TE modes and as
tan h,d;tanh,d, — h; %k, *(e,—1)—¢, !
o tan h,d, +tan h ,d,

=hd/tanhdt

(6)

for TM modes. The right-hand side is a function of A, and has
poles at b, = jw/t, j=1,2,3,---. It is decreasing within (0; b,)
and (b;; b,..1). The left-hand sides of these equations are func-
tions of h,. For h%> 0, the left-hand side of (5) has poles at
a,=in/(d, + d,) and that of (6) poles at a, = w(i —1)/(d, + d,),

i=1,2,3,--- . Both functions are increasing within (a,; @, +1).
For 42 < 0, the left-hand sides are continuously decreasing func-
tions of |A ).

When evaluating f,,, we multiply (1) by e,, subtract it from (2),
and express %, in terms of the resulting equation. Substituting 4,
into (5), resp. (6) yields the equation

f(hy)=h,/tanht. (M
The function f(#4 ;) has poles at

o= Ueraz2 + k?(er—l) ’

and is increasing within (0; ¢;) and (c¢;; ¢,41)- The plot of f and
g=h,/tan h 4t is given in Fig. 2. It is obvious that just one root
of (7) thus of (4) lies between each pair of adjacent poles from the
set {¢,, b, }7°,-;. The first root always lies between h, = 0 and the
lowest of the poles. Consequently, if forming a nondecreasing
sequence {z, }¥-; from zero and all the elements of the sets {c, }
and {4}, the root x; will satisfy the condition z; < x; < z,,; and
the bounds of the required interval are

i=1,2,3,---

v

= Z541- (8)
Note that if z, =z |, we should choose v, =2z, 0, u,,, =z,
+ &, where 8 is a sufficiently small correction, because z is equal
to the root x,. If x, is chosen as an initial value when looking for
Xg_q O X, the iteration may fail. However, the case z, =z,
is extremely unlikely for €, >1 and can safely be disregarded. It
can occur for €, =1, but this case (empty resonator) is of interest
only when debugging the program.

When solving for €, (task of measuring the permittivity of the
sample), we express ki, in terms of (1) and €, in terms of (2).
Substituting them into (5), resp. (6), we again obtain an equation
similar to (7). This time, its left-hand side f has no poles and is
monotonous in intervals large enough that only one intersection
of f and g occurs in each section of g. Therefore

Jjn/t<x, < (j+1)m/t. 9
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Fig 1 Configuration discussed in this paper.
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Fig. 2. Graphical solution of (7). The elements c,, b, z; are shown 1n the
lower part of the diagram.

It can be proved (Appendix II) that for j we must take

Jj=s—i-1 (10)

where s is the sequence number of the sought root and
int[h,(d,+d,) /7] h2>0, TEmodes (lla)
i={1+int[h,(d,+d,)/m] hZ>0, TMmodes (11b)
0 h2 <0, (11¢)

(int x is the greatest integer value of x). The bounds of the
required interval are

s=Jjm/t, v=(j+D)7/t. (12)

III. CONCLUSION

The presented method of defining one-root intervals quickly
and reliably determines the roots of dispersion relations for any
chosen mode of resonance without ambiguity and represents an
effective tool for systematic computer analysis of the structure.

APPENDIX I
DISPERSION RELATIONS

In order for the transverse field components to be continuous
at the air—dielectric interfaces of the resonator, certain specific
relation between the wavenumbers 4, and 4, must be satisfied.
This relation is referred to as a dispersion relation. For the TE
modes of the discussed resonator, the dispersion relation is

. 2

sinhyt|{hy\" . .

h—[(h_) sinh,d,sinh,d, —cosh,d ,cosh,d,
d

a

sinh,(dy+d,)

: —0 (A1)

—Cosh ¢t
a

and for the TM modes, it is

sin h 4t
hq

(hicosh,dycos h,dy — €2hisinh,d;sinh,d,)

+e,h coshytsinh,(dy+dy)=0. (A2)
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APPENDIX 11
ProoF oF FormuLas (10) AND (11)

The lower bound u, =z, of a one-root interval for root x is
identical with the sth member of the sequence {z,}, whose
members z; through z, can be obtained by arranging the elements
b (A3)

0,01,02,“',(,',,171,172,"‘ 7

into a nondecreasing (finite) sequence. The overall number of
elements used in (A3) is s =i+ j +1, hence (10) is valid. Last
used poles being b, and ¢, implies both (9) and ¢, < x, < ¢, 4,
which is for &, > a; equivalent with a, < &, < a,.; and results in
(11a,b) after simple calculations. If #, < a; (a, # 0 for TE modes
only) or if #2 < 0, no element from the set { ¢, } is used in (A3), so
that i = 0. The result i = 0 is obtained from (11a) for &, < a; and
from (11c) for A2 < 0.
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Normal-Mode Parameters of Microstrip Coupled
Lines of Unequal Width

S. KAL, D. BHATTACHARYA, anD N. B. CHAKRABORTI

Abstract —Empirical relations for the capacitive and inductive coupling
coefficients have been used to compute normal-mode parameters of non-
identical microstrip coupled lines. The computed values of mode velocities
and mode impedances are compared with available results from the litera-
ture and experimental results on nonidentical microstrip couplers to test
the applicability of the empirical relations.

I. INTRODUCTION

The normal-mode parameters of microstrip coupled lines are
usually determined from the capacitances and inductances of the
microstrip lines [1]-[6]. These are found by solving Laplace’s
equation for the quasi-TEM case and the Helmholtz equation for
the dispersive case [1]. Tripathi and Chang [2] calculated self and
mutual capacitances for nonidentical microstrip coupled lines
using Green’s function integral equation method. This short
paper aims at providing simple relations for finding the ncrmal-
mode parameters of nonidentical lines.

A previous communication [7] described the use of the empiri-
cal relations for inductive and capacitive coupling coefficients of
identical coupled microstrip lines. These have now been modified
to enable calculation of the normal-mode parameters of noniden-
tical microstrip coupled lines from a knowledge of the dimen-
sional ratio of the lines and relative dielectric constant of the
substrate material. Values of normal-mode parameters thus com-
puted from the quasi-static approach have been compared with
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